
Towards a Faceted Taxonomy of

Denial-of-Service Vulnerabilities in the Linux

Kernel

Rolando Sánchez-Fraga, Eleazar Aguirre Anaya, Raúl Acosta Bermejo, and
Moisés Salinas Rosales

Computer Research Center, National Polytechnic Institute, Federal District, Mexico
rsanchez b12@sagitario.cic.ipn.mx, eaguirre@cic.ipn.mx,

racosta@cic.ipn.mx, msalinasr@cic.ipn.mx

Abstract. The DoS vulnerabilities have become the most common type
of vulnerabilities in the Linux kernel. In the last years, researches have
focused on the design and implementation of detection and prevention
tools of these vulnerabilities; however, despite all efforts they still prevail.
This fact reveals the lack of a complete understanding of the causes
and characteristics of such vulnerabilities. Because of that, we propose
a faceted taxonomy, designed through the analysis and characterization
of known DoS vulnerabilities to help developers and researchers organize
and understand the records of actual vulnerabilities and then, focus their
efforts to remove and prevent the introduction of new vulnerabilities
through the development of applicable solutions.

Keywords: Taxonomy, Vulnerability, Denial of Service, Linux Kernel

1 Introduction

Despite significant advances in system protection and exploit mitigation tech-
nologies, the exploitation of software vulnerabilities persist as one of the most
common methods for system compromise. Vulnerabilities are continuously dis-
covered even in the latest versions of widely used software.

Linux kernel is a commonly attacked target. Its size and complexity are
the main reasons for the existence of vulnerabilities in it. Only in 2013, almost
200 vulnerabilities in the kernel were discovered and added to the Common
Vulnerabilities and Exposures (CVE) database. This is a serious problem taking
in count that the OS kernel is part of the trusted computing base (TCB) and
thus, any vulnerability in it could compromise the security properties of the
entire system.

In the last years, the number of new CVE entries related to denial-of-service
(DoS) vulnerabilities in the Linux kernel has quickly increased. From 2005 to
date, each year more than half of the new CVE entries related to the Linux
kernel have been DoS vulnerabilities [1].

This situation has given rise to several researches on detection of vulnerabili-
ties via code analysis and defenses against vulnerability exploitation. However, a

©L. Berthet, J. C. Chimal, E. A. Santos, E. Castillo
Advances in Computer Science
Research in computing Science 81, 2014 pp. 123-133



complete understanding of these vulnerabilities is necessary for the development
of applicable solutions.

The first step in understanding vulnerabilities is to classify them into a tax-
onomy based on their characteristics. A taxonomy classifies the large number
of vulnerabilities into a few well defined and easily understood categories. Such
classification can serve as a guiding framework for performing a systematic se-
curity assessment of a system. Suitable taxonomies play an important role in
research and management because the classification of objects helps researchers
understand and analyze complex domains.

Because of that, our research focuses on the design of a taxonomy for the
classification of denial of service vulnerabilities in the source code of the Linux
kernel through the analysis of vulnerabilities and identification of characteris-
tics to make easier the development of applicable solution for their mitigation
and identification. The main contributions of our work are the definition of the
taxonomy and the results of the analysis in which it is based.

The paper is organized as follows: we examine previous work on vulnerability
taxonomies in section 2, followed by a description of the methodology used in
order to develop the taxonomy in section 3. Afterwards, in section 4, we present
the current results of our research; the defined taxonomy, the classification of
the vulnerabilities we analyze, as well as statistics related to the occurrence of
certain vulnerabilities in our vulnerability set. Finally, in section 5, we conclude.

2 Related Work

Substantial research has focused on creating security taxonomies. Many of them
center on different aspects of a security incident: some classify vulnerabilities,
some methods of attack, and others security exploits. All previous taxonomies
have one main objective; to minimize exploitable software vulnerabilities.

[2,3,4,5,6,7,8,9,10,11] presented general vulnerability taxonomies. Other works,
like [12,13,14] focus on overflows and constructed C vulnerabilities taxonomies
focusing on C overflow vulnerabilities. [15] and [16] center on DoS and DDoS at-
tacks and defenses taxonomies. Most of these taxonomies were later subsequently
reviewed and analyzed further, as was done by [15] and [17].

3 Methodology

Based in [18], we define in Figure 1 our methodology for the design of the taxon-
omy. We begin examining a subset of the vulnerabilities we want to classify. Next,
we identify general characteristics of these objects. Identification of these char-
acteristics leads to the first effort at a taxonomy. The characteristics are grouped
into dimensions that form the initial taxonomy. Each dimension contains char-
acteristics that are mutually exclusive and collectively exhaustive. This process
is based on the empirical data that has been gathered about the vulnerabilities
and deductive conceptualization.

124Research in Computing Science (81) 2014

R. Sánchez-Fraga, E. Aguirre A., R. Acosta B., M. Salinas R.



Once the taxonomy is defined, we review it to look for additional conceptu-
alizations that might not have been identified or even present in the collected
data. In the process, new characteristics may be deduced that fit into existing
dimensions or new dimensions may be conceptualized each with their own set of
characteristics. It may even be the case that some dimension or characteristics
are combined or divided. After that, we examine the vulnerabilities using the
new characteristics and dimensions to determine their usefulness in classifying
vulnerabilities. Out of this step comes a revised taxonomy. Then we repeat this
approach, as appropriate, until we are sufficiently satisfied that the taxonomy is
mutually exclusive, exhaustive, unambiguous, repeatable, accepted and useful.
However, such closure is subjective and difficult to define. After the taxonomy
is completed, we proceed to evaluate and test the taxonomy identifying missing
or unclassified vulnerabilities.

Fig. 1. Investigation Methodology Fig. 2. Vulnerability analysis process

3.1 Analysis of the vulnerabilities

The analysis process consist of four steps [19]: information recollection, verifica-
tion, reproduction and documentation as presented in Figure 2. For the recollec-
tion phase, multiple reliable sources of information of the vulnerabilities should
be consulted.

The second step involves the verification and technical examination of each
of the vulnerabilities. Based on the recollected information, a manual review of
the source code of the kernel is performed to confirm their existence in code and
determine their cause and location. Then, in the reproduction step, the objective
is to create or test a proof of concept or exploit to reproduce the vulnerability and
recollect additional information. Finally, all the findings must be documented.
This phase is done in parallel with the other phases and ends with a finding

summary as showed in Table 1.

125 Research in Computing Science (81) 2014

Towards a Faceted Taxonomy of Denial-of-Service...



Table 1. Finding Summary

Property Value

ID Different identifiers founded. For example, CVE and bugtraq IDs.
Localization Localization of the vulnerability. File(s), function(s), line(s).
Description Description of the vulnerability.
Cause Cause of the vulnerability.
Prerequisites Prerequisites for the vulnerability to be exploited.
Remediation Founded remediations. Patches, modules, tools, etc.
Exploit Existence of exploits.
CVSS Severity CVSS Severity score.
DREAD Risk Score according to DREAD metrics.

3.2 Evaluation and Testing

The evaluation of the taxonomy consists in proving that the taxonomy complies
with the characteristics of a well-defined taxonomy. According to [7], satisfactory
taxonomies have classification categories with the following characteristics:

– Mutually exclusive. Classifying in one category excludes all others because
categories do not overlap.

– Exhaustive. Taken together, the categories include all possibilities.
– Unambiguous. Clear and precise so that classification is not uncertain, re-

gardless of who is classifying.
– Repeatable. Repeated applications result in the same classification, regard-

less of who is classifying.
– Accepted. Logical and intuitive so that categories could become generally

approved.
– Useful. Could be used to gain insight into the field of inquiry.

A taxonomy, however, is an approximation of reality and as such, a satisfac-
tory taxonomy should be expected to fall short in some characteristics. Moreover,
this evaluation is subjective and difficult to define. Because of that, the phase is
complemented with a test, which should show the deficiencies of the taxonomy
in a clearer way.

The test is formed by two parts: The classification of the set of vulnerabilities
analyzed, and the classification of a set of vulnerabilities that were not analyzed.
The results of these two tests will show the correctness and robustness of the
taxonomy.

Finally, according with the results, missing and unclassified vulnerabilities
have to be identified and evaluate if the process should be done again or the
taxonomy is finished.

4 Results

In this section, we present the current results of our research. At the time of
writing this paper, two iterations of the methodology shown in Figure 1 (step 1
to 8) has been performed.

126Research in Computing Science (81) 2014

R. Sánchez-Fraga, E. Aguirre A., R. Acosta B., M. Salinas R.



4.1 Analysis of the vulnerabilities

For the analysis, a set of 36 CVE entries of DoS vulnerabilities in the Linux
kernel 3.12 were selected. These vulnerabilities comprehend the entries added in
the first 8 months (between November 2013 and June 2014) of the 3.12 kernel
lifetime. Linux kernel 3.12 was selected, as the latest longterm kernel at the time
this research started.

For the recollection phase, multiple reliable sources were selected. We col-
lect information of each vulnerability from sources like CVE[20], CVEDetails[1],
NVD[22], Openwall[23], SecurityFocus[24], Linux kernel Mailing List[25] and Git
Linux kernel source tree[26]. Collected information included a brief description of
the vulnerability, severity scores (usually CVSS[21] based), vulnerability types,
vulnerable software and versions and references to advisories, confirmations,
tracks, solutions, exploits and patches.

During the reproduction step, a subset of the vulnerabilities was selected to
try or create a proof-of-concept (PoC) or exploit to reproduce them. Only those
vulnerabilities with a low access complexity (according to CVSS score) or with a
usable existing PoC or exploit were considered. A virtual machine with Debian
7.1.0 and a 3.12.0 vanilla kernel were used as a test system. Additionally, kernel
dumps were configured and inspected to complement the verification step.

As an example, we show part of the analysis of the vulnerability CVE-2014-
2523.

(a) CVEDetails (b) NVD

Fig. 3. CVE-2014-2523 information

Figure 3 shows the information recollected from CVEDetails and NVD web-
sites. Both sites present the official description from the CVE database. NVD
presents raw CVSS information, while CVEDetails present the same informa-
tion but in a more descriptive way. Fortunately, the description is good enough
to start the code analysis. Now we search any of the three mentioned functions
(dccp new, dccp packet and dccp error) and check for any use of a DCCP header
pointer.

127 Research in Computing Science (81) 2014

Towards a Faceted Taxonomy of Denial-of-Service...



Fig. 4. dccp new vulnerable function

Table 2. CVE-2014-2523 Finding Summary

Property Value

ID CVE-2014-2523, 66279
Localization net/netfilter/nf conntrack proto dccp.c dccp new (line 431),

dccp packet (line 489), dccp error (line 580)
Description Incorrect use of a DCCP header pointer, which allows remote at-

tackers to cause a denial of service or possibly execute arbitrary code
via a DCCP packet that triggers a call to the dccp new, dccp packet,
or dccp error function.

Cause Buffer overflow trying to copy dccp header in a pointer address.
Prerequisites Netfilter enabled in kernel configuration (disabled by default). con-

ntrack and dccp conntrack modules installed and running.
Remediation Change &dh for & dh in dccp new, dccp packet and dccp error

functions. (commit b22f5126a24b3b2f15448c3f2a254fc10cbc2b92)
Exploit Non-existent. A PoC was created.
CVSS Severity High (10.0) (AV:N/AC:L/Au:N/C:C/I:C/A:C)
DREAD Risk High Priority (8.4) (DP:10/R:9/E:9/AU:6/D:8)

As we can see in Figure 4, *dh is the pointer we are looking for. This pointer
is used to store the returned value of the function skb header pointer. As pa-
rameters, we send the buffer, a data offset, the size of the dccp header and the
reference of the header; however, we are sending the reference of the pointer
instead. If we take a look at the code of the skb header pointer function, it calls
another function that copies the content to the referenced buffer. However, the
reference received as a parameter is a pointer not the buffer. That means that if
we receive a malformed DCCP packet, we could end overwriting memory on the
stack causing a complete denial of service. Worth noticing that if we receive a
special crafted packet and have no stack protection, we could end up executing
some malicious code.

Finally we document the results of our analysis. As mentioned before we
create a finding summary. Table 2 presents the finding summary for the vulner-
ability CVE-2014-2523.

4.2 Taxonomy

With our first analysis, we identified 7 facets:

– Cause of the vulnerability. Reflects the kind of error in the source code that
caused the vulnerability.

128Research in Computing Science (81) 2014

R. Sánchez-Fraga, E. Aguirre A., R. Acosta B., M. Salinas R.



– Location of the vulnerability. Refers to the location, in the source code,
where the vulnerability is present and defined as subsystems of the kernel.

– Availability, integrity and confidentiality impact. Refer to the availability /
integrity / confidentiality impact of a successfully exploited vulnerability.

– Access vector. Reflects how the vulnerability is exploited.
– Exploitability. This taxonomy classifies vulnerabilities according to the cur-

rent state of exploit techniques and code availability.

The cause facet includes the next 5 categories:

– Validation Error: These vulnerabilities arise due to failures in responding to
unexpected data or conditions.

– Synchronization and Timing Error: These are caused by the improper seri-
alization of the sequences of processes or an error during a timing window
between two operations.

– Resource Management Error: Vulnerabilities in this category are related to
improper management of system resources.

– Exception Handling Error: These are caused by the improper response to
the occurrence of exceptions.

– General Logic Error: These vulnerabilities are caused by a bad logic in the
implementation. Errors like using the wrong operator, uninitialized variable,
missing parameter, assigning instead of comparing and wrong operand order
belong to this class.

The location facet has the next categories:

– System Call Interface (SCI): Layer that provides the means to perform
function calls from user space into the kernel. Founded in /linux/kernel an
/linux/arch.

– Process Management (PM). Focused on the execution of processes. Founded
in /linux/kernel and /linux/arch.

– Virtual File System (VFS). Provides a common interface abstraction for file
systems. Sources are founded in /linux/fs.

– Memory Management (MM). Sources founded in /linux/mm.
– Network Stack (NS). Sources founded in /linux/net.
– Arch-dependent code (Arch). Sources founded in /linux/arch.
– Device Drivers (DD). Sources founded in /linux/drivers. Part of the kernel

that makes a particular hardware device usable.

The availability facet includes the next categories:

– Partial: There is reduced performance or interruptions in resources availabil-
ity.

– Complete: There is a total shutdown of the kernel.

Confidentiality facet includes the following classes:

– None: There is no impact to the confidentiality of the system.

129 Research in Computing Science (81) 2014

Towards a Faceted Taxonomy of Denial-of-Service...



– Partial: There is considerable informational disclosure. Access to some sys-
tem files is possible, but the attacker does not have control over what is
obtained, or the scope of the loss is constrained.

– Complete: There is total information disclosure, resulting in all system files
being revealed. The attacker is able to read all of the system’s data (memory,
files, etc.).

Integrity facet includes the following classes:

– None: There is no impact to the integrity of the system.
– Partial: Modification of some system files or information is possible, but the

attacker does not have control over what can be modified, or the scope of
what the attacker can affect is limited.

– Complete: There is a total compromise of system integrity. There is a com-
plete loss of system protection, resulting in the entire system being compro-
mised. The attacker is able to modify any files on the target system.

The access vector facet includes the next 3 categories:

– Local. Refers to vulnerabilities exploitable only having an interactive, local
(shell) account that interfaces directly with the underlying OS.

– Local Network: These vulnerabilities require having access to either the
broad-cast or collision domain of the vulnerable software.

– Remote. Refers to those vulnerabilities remotely exploitable.

And the exploitability facet includes the next four categories:

– Unproven: No exploit is publicly available or an exploit is entirely theoretical.
– Proof-of-Concept: Proof-of-concept exploit code or an attack demonstration

that is not practical for most systems is available.
– Functional: Functional exploit code is available. The code works in most

situations where the vulnerability exists.
– High: Either the vulnerability is exploitable by functional mobile autonomous

code, or no exploit is required (manual trigger) and details are widely avail-
able.

4.3 Evaluation and Testing

For this phase, we only performed the evaluation and the test with our set of
analyzed vulnerabilities. We classify our set of vulnerabilities on each of the
described dimensions of our taxonomy. Tables 3 to 9 show the results of the
classification.

During the classification, we identify the following problems on our taxonomy:

1. The facets’ hierarchies need to be expanded. Subclasses are needed for a
better description.

2. The location and access vector dimensions are ambiguous.

Because of that, we decided that at least another iteration of our process is
necessary. The location dimension could be divided according to the source files
and directories structure, rather than by subsystem. With the cause and access
vector dimensions, hierarchical classes could be defined to avoid ambiguity.

130Research in Computing Science (81) 2014

R. Sánchez-Fraga, E. Aguirre A., R. Acosta B., M. Salinas R.



Table 3. Vulnerabilities based in their cause

Type Number %

Validation Error 22 61.11
Synchronization and Timing Error 7 19.44
Resource Management Error 3 8.33
Exception Handling Error 2 5.56
General Logic Error 2 5.56

Table 4. Vulnerabilities based in their
location

Location Number %

System Call Interface 3 8.33
Process Management 1 2.78
Virtual File System 3 8.33
Memory Management 3 8.33
Network Stack 14 38.89
Arch-dependent code 6 16.67
Device Driver 6 16.67

Table 5. Vulnerabilities by availability
impact

Availability Impact Number %

Partial 1 2.78
Complete 35 97.22

Table 6. Vulnerabilities by confiden-
tiality impact

Confidentiality Impact Number %

None 27 75
Partial 2 5.56
Complete 7 19.44

Table 7. Vulnerabilities by integrity
impact

Integrity Impact Number %

None 27 75
Partial 2 5.56
Complete 7 19.44

Table 8. Vulnerabilities by existence
of exploits

Existence of exploits Number %

Unproven 23 63.89
Proof-of-Concept 11 30.56
Functional 1 2.78
Complete 1 2.78

Table 9. Vulnerabilities by access vec-
tor

Access Vector Number %

Local 22 61.11
Local Network 6 16.67
Remote 8 22.22

5 Conclusion

The results of an analysis of DoS vulnerabilities on Linux, a new DoS vulnerabil-
ities taxonomy and the classification of the analyzed vulnerabilities with the new
taxonomy were presented. The analysis results will enable Linux kernel main-
tainers, developers and researchers to better understand denial-of-service vulner-
abilities and prioritize their efforts according to the results presented. That way,
better tools, techniques and defenses will be created. Differently from previous
work, the scope of our taxonomy is DoS vulnerabilities in order to highlight the
characteristics and provide more useful information with the classification.

131 Research in Computing Science (81) 2014

Towards a Faceted Taxonomy of Denial-of-Service...



References

1. CVE Details. Linux kernel, http://www.cvedetails.com/product/47/Linux-Linux-
Kernel.html?vendor id=33

2. Krsul, I.V.: Software vulnerability analysis. pp. 171. Purdue University (1998)
3. Lough, D.L.: A taxonomy of computer attacks with applications to wireless net-

works. pp. 348. Virginia Polytechnic Institute and State University (2001)
4. Aslam, T.: A Taxonomy of Security Faults in the UNIX Operating System. (1995)
5. Bazaz, A., Arthur, J.D.: Towards a Taxonomy of Vulnerabilities. ;In HICSS (2007)
6. Gegick, M., Williams, L.: Matching attack patterns to security vulnerabili-

ties in software-intensive system designs. ;ACM SIGSOFT Software Engineering
Notes(2005)1-7

7. Howard, J.D., Longstaff, T.A.: A common language for computer security incidents
(1998)

8. Tsipenyuk, K., Chess, B., McGraw, G.: Seven Pernicious Kingdoms: A Taxonomy
of Software Security Errors. ;IEEE Security & Privacy(2005)81-84

9. Hansman, S., Hunt, R.: A taxonomy of network and computer attacks. ;Computers
& Security(2005)31-43

10. Killourhy, K.S., Maxion, R.A., Tan, K.M.C.: A Defense-Centric Taxonomy Based
on Attack Manifestations. ;In DSN(2004)102-102

11. Landwehr, C.E.: Formal Models for Computer Security. ;ACM Comput.
Surv.(1981)247-278

12. Kratkiewicz, K.: Evaluating Static Analysis Tools for Detecting Buffer Overflows
in C Code. (2005)

13. Ahmad, N., Aljunid, S., Ab Manan, J.-l.: Taxonomy of C Overflow Vulnerabilities
Attack. In: Zain, J., Wan Mohd, W., El-Qawasmeh, E. (eds.) Software Engineering
and Computer Systems, vol. 180, pp. 376-390. Springer Berlin Heidelberg (2011)

14. Kratkiewicz, K., Lippmann, R.: A taxonomy of buffer overflows for evaluating
static and dynamic software testing tools. Proceedings of Workshop on Software
Security Assurance Tools, Techniques, and Metrics 500, 44 (2006)

15. Igure, V., Williams, R.: Taxonomies of attacks and vulnerabilities in computer
systems. Communications Surveys & Tutorials, IEEE 10, 6-19 (2008)

16. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mecha-
nisms. SIGCOMM Comput. Commun. Rev. 34, 39-53 (2004)

17. Ahmad, N.H., Aljunid, S.A., lail Ab Manan, J.: Understanding vulnerabilities by
refining taxonomy. IAS, pp. 25-29. IEEE (2011)

18. Nickerson, R. C., Muntermann, J., Varshney, U., Isaac, H.: Taxonomy Development
in information systems: Developing a taxonomy of mobile applications (2009)

19. Dowd, M., McDonald, J., Schuh, J.: The Art of Software Security Assessment:
Identifying and Preventing Software Vulnerabilities. Addison-Wesley Professional
(2006)

20. Common Vulnerabilities and Exposures, https://www.cve.mitre.org
21. Common Vulnerability Scoring System v2.0, http://www.first.org/cvss/cvss-guide
22. National Vulnerability Database, http://nvd.nist.gov
23. Openwall, http://www.openwall.com/
24. SecurityFocus, http://www.securityfocus.com
25. Linux kernel mailing list, https://lkml.org/
26. Linux kernel source tree, https://github.com/torvalds/linux

132Research in Computing Science (81) 2014

R. Sánchez-Fraga, E. Aguirre A., R. Acosta B., M. Salinas R.


